
Page 1

OL Search: The On Location™ API 1.1

This release contains files that implement the search
engine technology of the On Technology, Inc. product On
Location™. The technology in the On Location™
Developer's Kit cannot be incorporated into a shipping
version of your product until your company and ON
Technology have agreed upon mutually acceptable
technical and financial terms.

Description:

The On Location Developer's Kit is a tool for programmers that allows
access to the search engine technology of On Location. The kit consists of a
library (plus code resource), C and Pascal header files, example XCMD source,
pre-built XCMDs and an example stack. This will allow queries on existing On
Location indexes from within other applications (including DAs, MPW tools and
HyperCard stacks). The kit retains the speed of the On Location product.

Files:

The files included in this release of the On Location API are as follows:

ol_search.h - MPW 3.2 C header file
ol_search.p - MPW 3.2 Pascal header file
ol_search_glue.o - MPW 3.2 library file
ol_search_code - Resource file containing the ol_search engine

Examples files:
ol_search_XFCN.c - MPW 3.2 C source file for example XFCN's

 OLSearch_XFCN - Pre-built HyperCard 2.0 XFCN's
 OLSearch - Example HyperCard 2.0 stack

Page 2
API Overview:

Two data types and the related enumerated values are used:

enum {
no_err = 0,
no_code_resource,
bad_index,
damaged_index,
bad_query_type,
bad_query_string,
bad_result_handle,
result_overflow, /* non-fatal */

};
typedef short ol_error;

enum {
filename_matches_exactly = 0,
filename_starts_with,
filename_ends_with,
filename_contains,
text_matches_exactly,
text_matches_root_of,

};
typedef short ol_query;

Three functions are used to access the search engine:

ol_init:

Handle ol_init(); /* C declaration */
FUNCTION ol_init: HANDLE; C;{ Pascal declaration }

 ol_init returns a relocatable, non-purgeable handle to the persistent state of
the engine. This data is on the order of the size of the “OL File Kinds” file
(about 15K). Call this function once upon entry to your code to initialize the
On Location search engine. The engine will still perform the query if ol_init

is not called provided a zero is passed as the ol_state parameter. If no state
is provided then only “generic” file kinds data will be available in the result
data (i.e. “document”, “folder”, or “application”).

Page 3
Note:

If you are running the On Location INIT on the host machine and
background indexing is enabled ol_init will turn off background
indexing. This is necessary to prevent conflicts.

ol_search:

ol_error ol_search(Handle ol_state,
const Str255 index,
const Str255 query,
ol_query type,
Handle result,
long *num_hits);

FUNCTION ol_search(ol_state: HANDLE;
index: Str255;
query: Str255;
type: ol_query;
result: HANDLE;
VAR num_hits: LONGINT): ol_error; C;

Parameters:

ol_state: the handle returned from ol_init (or zero, see above).
index: full path to the index file.
query: query string. NOTE: this is actually restricted to 100

characters.
type: one of the values from the ol_query enum.
result: a handle of text (not more than 30,000 bytes)
num_hits: actual number of hits of the query (not he number

returned in the result).

Result data:

The format of the result data is described by the constants:

#define FIELD_DELIMITER '\t'
#define LINE_DELIMITER '\n'
#define END_OF_HANDLE '\0'

Page 4
If the result data grows beyond 30,000 bytes it will be truncated. (This is a
limitation of HyperCard fields). Only complete lines will be written. In the
case of truncation, result_overflow will be returned from ol_search.
num_hits will contain the actual number of hits not the number of lines in
the handle. The result handle will be resized to the actual size of the data
(including the END_OF_HANDLE character).

Note:
The size of the result handle (less one for the
END_OF_HANDLE character) should be used to determine
the amount of data to parse. The END_OF_HANDLE
character is added for compatibility with HyperCard
which requires a null terminated string to be displayed in
a field.

Be advised that null characters (currently the
END_OF_HANDLE character too) can appear elsewhere in
the result handle as well because TYPEs, CREATORs,
and FILENAMEs can include them. This may result in
the truncation of the results field prematurely when
displayed in HyperCard (like in the OLSearch example
stack).

If the number of hits (num_hits) is zero the only character in the handle will
be the END_OF_HANDLE delimiter.

Return values:

If ol_search encounters an error with the parameters, one of the following
values of ol_error may be returned:

no_err: No problems encountered.
no_code_resource: The ol_search code resource is not

available. Check your build procedure
(described below).

bad_index: The file passed in as the index to be queried
was not a valid On Location index.

damaged_index: The index provided is damaged. You will
need to delete that index and reindex
the target volume.

Page 5
bad_query_type: Value given for query was not

in the range provided by ol_query.
bad_query_string:More then 100 characters were placed

in the query buffer.
bad_result_handle: Invalid result handle.
result_overflow: The query results overflowed the 30,000

character limit. The handle is still valid and
contains only complete lines.

If an unexpected error is encountered then the value returned from
ol_search will be a Macintosh OS error.

ol_term:

void ol_term (Handle ol_state);
PROCEDURE ol_term(ol_state: HANDLE); C;

Call ol_term when your application terminates or when you are finished
using the On Location search engine. ol_state disposes of the state data
initialized by ol_init.

NOTE: The handle is disposed by ol_term and any further use of it will be
an error.

Build instructions:

The file ol_search_glue.o contains stub routines that will load the resource
found in the file ol_search_code. In order to build an executable using this
package, link with the file ol_search_glue.o (or import it into the Think
environment) and use “rez” (or resedit or Think’s built in resource inclusion
mechanism) to include the resource from ol_search_code (TYPE=ONLC,
ID=0) into the executable. We have had success using the engine from
Apple’s Allegro Common Lisp environment, call us if you would like more
information.

HyperCard Users:

In order to use the search engine from HyperCard you must first copy the
XFCN’s from the file :Examples:ol_search_XFCN into the stack that you
wish to use it from. Please see the example stack OLSearch for details on

how

Page 6
to access the XFCN’s. If further information is needed please call or post
messages to our bulletin boards.

Page 7

General Information and limitations:

In this release simultaneous queries on the same index by the search
engine and the On Location product are not supported.

If background indexing is enabled on the host machine it will be disabled
when on_init is called and re-enabled with a call to on_term.

Remember that the search engine needs memory to run (so grow the
memory partition of the host accordingly).

Contact:

Kim Agricola
On Technology, Inc
155 Second Street
Cambridge, MA 02141
(617) 876-0900
America Online: ON Tech

